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Abstract: Risk analysis has become increasingly important with the emergence of new, unknown and 
potentially dangerous technologies. Risk analysis builds on the use of models. If the models are valid 
representations of reality, they can be used to predict and thus also to minimize the risks. Any model is, 
however, a simplification and a generalization which implies that it has only a limited region of validity. 
If a model in the risk analysis process is used outside its region of validity it can introduce serious flaws 
in the actions on different risks. The use of deficient models actually poses the most serious threat to the 
validity of risk assessments. To understand the origins of deficient models, it is necessary to consider the 
modelling process and the people involved in using the models. Models in risk analysis are based on 
many assumptions which have to be understood if erroneous interpretations are to be avoided. The paper 
considers theoretical foundations of risk analysis, models used in risk analysis and the modelling process 
leading to these models. 
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1. Introduction 

Man has always been searching nature for or-
der and predictability. This search has triggered 
scientific discoveries and has thus also initiated 
the process of technological development. In this 
process, models and theories have been used for 
predicting outcomes of possible actions and they 
have served as tools for making better decisions. 
Models of many kinds are used more or less con-
sciously in everyday choices. There are reasons 
to believe that heuristics people are using build 
on internal models of the outside world. 

In spite of the importance of formulating and 
using models, astonishingly little has been writ-
ten on the modelling process itself. Some authors 
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have proposed that modelling is an art rather than 
a science, which would suggest that it cannot be 
described analytically. This view tends however 
to dilute the believability of the obtained predic-
tions. Instead, modelling should be considered as 
an engineering science with the understanding 
that a useful model is a good model. Models 
carry the essence of human understanding and 
can therefore be seen as an important component 
of cognitive processes. Research in human deci-
sion making proposes that a major category of 
human errors is due to the use of erroneous or 
otherwise deficient models of reality. Decision 
support systems also contain more or less explicit 
models of their target systems. 

The modelling process includes phases of 
model formulation, model validation and model 
use. A model is always both a simplification and 
a generalization which means that a model al-
ways is restricted to its region of validity. Any 
step outside this region may cause the model to 
produce completely misleading results. Models 
are developed during a process of continuing re-
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finements and the control of this process can 
have a large influence on the quality of the result-
ing model. 

Modellers play a crucial role in the modelling 
process (Rouse, 1982). If two teams take up the 
same modelling task, it is not likely that they will 
come up with the same model. Both teams may 
still have completely reasonable arguments for 
their own modelling approaches. Models are even 
sensitive to their users in that sense that two 
teams using the same model may come up with 
different predictions. Human learning is a process 
of modelling where many different models are 
formed in establishing an understanding of the 
outside world. In this process, the models, the 
modelling process and the modellers are some-
times interacting in a rather unpredictable way. 

The discussion below aims at giving a general 
background of models and the modelling process 
to the extent they are used in risk analysis. Natu-
ral scientists have sometimes expressed a large 
faith in their models and have then forgotten that 
the real world always is much more complex than 
any model. Simplistic views on the applicability 
of risk analysis have found their proponents with 
claims that people are behaving irrationally to-
wards risks (Zeckhauser and Viscousi, 1990). 
These claims do .not take into account the inher-
ent complexity of the underlying models used in 
risk analysis. 

Risk analysis has its foundations in different 
sciences. Models of different kinds have to be 
combined into a common framework in a risk 
analysis. Before claimed quantitative risk esti-
mates can be regarded valid and reliable in an 
undisputable scientific sense. Far better models 
of both human: decision making and responses of 
nature will be needed. This insight does not how-
ever in any sense diminish the usability and bene-
fit of risk analysis as it is exercised today. The 
argument that, some model is better than no 
model is still valid (Forrester, 1971). 

 
 

2. Models in risk analysis 

Risks are usually defined as a function of 
probability and costs. An enumeration of possible 
chains of unwanted events can be used to calcu-
late the risks of a technical system. The probabil-
ity of a chain of events can be calculated from the 

probabilities of single events using rules of prob-
ability calculus. The resulting probability can 
then be weighted with the cost of the conse-
quences of the chain of events to give the risk. 
This straightforward consideration of risk is 
however only a model which has to be refined to 
encompass more detailed elaborations of risk. 

The first refinement is to require that the risk 
model should cover different types of risks. 'A 
simple view is that high probability and small 
cost events should be considered to carry the 
same risk as low probability and high cost events. 
One example is to compare the risk of one thou-
sand accidents each of which causing one death 
with the risk of one accident causing a total of 
one thousand deaths. Many arguments have been 
expressed to simply use the: product of probabil-
ity and cost as an objective model of risks. The 
Dutch safety authorities have however decided to 
weigh high cost events more heavily (Ministry of 
Housing, Physical Planning and Environment, 
1991). This argument is understandable, because 
large accidents often carry additional costs of 
fears and societal disruptions. 

A second refinement of the simple model of 
risk is to consider different consequences such as 
losses of human life, injuries, environmental 
damages and economic losses. The consequences 
may also have different time constants, they may 
influence risk target groups differently, some 
risks can be acted on and other cannot, some 
risks are from natural sources and other are man 
made, some have their effects on a local level and 
others on a global level, etc. These different di-
mensions would require a multi-attribute frame-
work, but the inherent difficulties of comparing 
very different risks make such approaches con-
troversial. 

The risk analysis methodology itself contains 
an implicit model of causation and control i.e. it 
is assumed that an unwanted outcome has a cause 
and that this outcome can be avoided by avoiding 
its cause. This assumption provides the rational-
ity of risk analysis as an activity to identify and 
decrease risks which are connected to certain 
activities. Risk analysis is especially geared to-
wards actions on low probability events, because 
high probability events can be reacted to in a di-
rect feedback loop of improvements. The risk 
analysis actually enters a feedforward control 
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loop where the risk causation models are used to 
predict a resulting risk level. The prediction is 
then used as an instrument to decrease the risk to 
an acceptable level. The risk analysis is a model 
which is used to simulate reality in a search for 
improvements until an acceptable solution is 
found (Wahlström, Laakso and Lehtinen, 1988). 

The feedback and feedforward control loops 
actually provide a model of risk management (cf. 
Figure 1). The risk management process with its 
goals, practices and rules of conduct are setting 
acceptable borders for design and operation' of 
potentially hazardous systems. This model im-
plies that a model of the hazardous system is used 
in the feedforward control. This model can pro-
vide a simulation of possible accident sequences 
to be studied which aim at constructing barriers 
against their occurrence. The feedback loops of 
operational experience provide the necessary cor-
rections of the models used. 

 
 

3. What is a model? 

According to a dictionary definition a model is 
"a simplified representation or description of a 
system or complex entity, especially-one de-
signed to facilitate calculations and predictions" 
(Collins English Dictionary, 1986). In loose 
terms a. model can be said to be a counterfeit 
reality which can be used to test the outcome of 
possible actions to be taken. The model gives 
predictions and the predictions are used to choose 
between possible actions. The model provides a 
mapping of the reality to a modelled reality from 
which images can be interpreted as real se-
quences of` events. The model' also carries the 

target of attention by the separation between the 
system to be modelled and its environment (cf. 
Figure 2). This separation assumes that the inter-
actions carried from the output of the system 
through the environment back to its input can be 
neglected as being small. 

 
A model can be separated into three parts the 

logic engine, the structure of the model and its 
parameters (cf. Figure 3). The logic engine con-
sists of the computational rules by which the out-
put is calculated from the input and the model. 
The model structure provides a script of how 
computational rules should be applied and, the 
parameters quantitative weighing factors used in 
the calculations. The logic engine and the struc-
ture of the model limit the richness of the input 
and output pairs that can be generated. 

 
The search for a model of a system requires 

large amount of data i.e. collections of input and 
output pairs. There is an implicit relationship be-
tween data and the structure of the model, be-
cause any data collection relies on an implicit 
model. A change in this, implicit model engine 
and structure can easily make data collected ear-
lier obsolete. 

Using the language of systems theory one can 
say that a real system S is modelled by a system 
S' if there exists a mapping f from the space of 
inputs of S to the space of inputs of S' and a map-
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Figure 3. A model consists of a logic engine, model 
structure and model parameters 
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ping g from the space of outputs of S' to the space 
of outputs of S such that 
u' = f(u),      y' = S'(u'),      y = g(y') 

and  y = S(u).  (1)  
The mappings f and g determine how the sys-

tem S is represented by its model S'. Given a cer-
tain representation f and g then the input x' and 
the output y' can be calculated. The modelling 
problem is then to calculate the model S' of the 
system S. When u' and S' are given the calcula-
tion of y' could be called the simulation problem. 
These two problems suggest a third type of prob-
lem, the control problem. The model S' and a 
wanted output y' are given and the input u' giving 
that output should be calculated. These three 
problems are summarized in Figure 4. 

 
The mappings f and g are in a sense defining 

the model S' when the real system S is given and 
they are selected at the discretion of the modeller. 
For a certain system there are many different 
mappings that can be selected. The selection can 
often determine the usefulness of the model. The 
mappings f and g are not independent, but they 
have no fixed relationship. 

A modelling exercise is often implicitly a con-
trol problem. The model is built with an ultimate 
intent of obtaining better decisions, i.e., better 
control of the system. A modelling exercise is 
thus governed by the intent of the control prob-
lem. The control problem is connected to a spe-
cific goal, because, the modeller wants to accom-
plish something by a more favourable output 
from the real system. The goals are connected to, 
values functions which define order relations on 

the set of possible outcomes of the system. A 
control problem therefore bears a close connec-
tion to an optimization problem. 

The most essential concept in the modelling 
process is causality. The input u applied to the 
real system S is causing the output y. Another 
input ul would cause another output yl. The cause 
and effect relationship between input and output 
provides the main reason for modelling a system. 
An unwanted output w can be avoided by avoid-
ing the input v which causes it. The optimal out-
come y* can similarly be obtained by selecting 
the optimal causing input u*. A model offers the 
possibility of doing experimentation with the 
model instead of the system. A commitment to 
action can be postponed until an acceptable input 
output pair has been found. 

 
 

4. Different types of models 

Models can be divided into the general catego-
ries: Verbal, symbolic and numeric. A verbal 
model uses spoken language and its inherent lo-
gics as the logic engine. A verbal model is often 
defined using if-then statements. A symbolic 
model consists of a set of symbols and a set of 
rules for how these symbols can be combined. 
Symbolic models are often used to express rela-
tionships between entities. Numeric models are 
used to calculate quantitative answers. Numeric 
models use mathematics as their logic engine. 
Risk analysis studies often combine all these 
models and special attention should then be given 
to ensuring compatibility of the models. 

Static models do not contain time dependent 
behaviour, which means that the transfer of in-
formation between causes and effects is consid-
ered to be instantaneous. Time dependent behav-
iour is included in dynamic models and time con-
stants have to be considered in the transfer of 
information between inputs and outputs of the 
system. Many models are deterministic in the 
sense that they always give the same output when 
a specific input is applied. A chance mechanism 
is included in stochastic models. Stochastic mod-
els can be used to calculate estimates of probabil-
ity distributions by repeated simulations of sys-
tem responses. Risk analysis models are stochas-
tic as they are concerned with probabilities. A 
typical probabilistic safety analysis model is 
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Figure 4. The three problems of systems analysis 
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static, because time dependence is usually omit-
ted in favour of a more accurate modelling of 
components and sequences of events. More re-
fined models take into account risks as a function 
of time, but the dynamic modelling of probability 
distributions requires more efforts and simplifica-
tions in other aspects. 

Models are used for understanding the causal 
mechanisms of a real system. This understanding 
makes it easier to select inputs for influencing 
outputs in a favourable way. Models are used to 
make predictions for future outcomes of real sys-
tems. The predictions make it possible to system-
atically select actions which give wanted out-
comes. In this way models are used as tools for 
optimizing control strategies. Models can also be 
used for training of human decision makers to 
make better decisions. There is often a need to 
combine many models into an integrated frame-
work to provide users with diverse views of the 
system. 

Linear models have a special position, because 
an extensive analytical apparatus is available for 
predicting responses directly from the structure 
of the model. Nonlinear systems can sometimes 
be modelled by linear models in a small opera-
tional regime around a certain operational point. 
When the deviations from the operational point 
are small and the nonlinearities are smooth the 
linearized model can give all the essential dy-
namics of the system. Nonlinear models are usu-
ally not simple enough to allow elaborate analyti-
cal calculations and the equations therefore have 
to be solved numerically. Models used in risk 
analysis often contain nonlinearities such as mul-
tiplication, division, trigger functions, saturation, 
hysteresis, etc. which implies that there is no as-
surance that a linearized model is valid. 

Control structures of the modelled systems 
have to be included in the same way as in the 
system itself. Controls are sometimes making the 
dynamics of a system simpler because certain 
variables can be assumed to stay within defined 
intervals. The possibility that the controller can 
have a failure will however make a more refined 
model necessary. An incorrect model of the con-
trol structures can easily offset the dynamics of 
the model to yield a completely incorrect re-
sponse.  

 
 
 

5. Building a model 

Building a model is a rather pragmatic exer-
cise which contains iterations between a large 
number of different tasks (cf. Figure 5). There are 
no fixed rules for what a model should look like. 
The purpose of the modelling exercise will de-
termine the logic engine to be used. Qualitative 
predictions of relationships and directions of in-
fluence are often sufficient and in these cases 
verbal or symbolic models can be useful enough. 
Sometimes it is advantageous to use quantitative 
models to calculate responses to different actions 
although qualitative results would be sufficient. 

The mapping f by which an image of the real-
ity is created and the mapping g which recreates 
the reality from simulated results are determined 
in the modelling process. A model should be re-
fined enough not to be trivial, but simple enough 
to bring forward only the essential characteristics 
of the real system. The first step in building a 
model is to distinguish between the system to be 
modelled and its environment. The second step in 
the modelling process is a simplification. This 
means that characteristics of the real system 
which are not relevant are not taken into consid-
eration. A third step is a generalization over a 
large number of similar components into one 
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Figure 5. Modelling is an interative process where 
new observations may force the modeller to step 
back to earlier stages 
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lumped component which gives an average be-
haviour. This generalization often takes place as 
a renormalization in a transfer from a micro view 
of system parts to a macro view of system behav-
iour. 

When the appropriate simplifications and gen-
eralizations have been made causal relationships 
between variables in the model can be deter-
mined. The causal relationships can be estab-
lished either qualitatively, i.e., there exist a rela-
tionship between two variables such that the first 
is influencing the second, or, quantitatively, i.e., 
also giving the size of the influence. In physical 
systems causal relationships often are two-
directional, i.e. there is an interaction and not 
only an influence between the variables. 

Building a model progresses from a definition 
of a model structure where a micro behaviour is 
used for explaining observed macro behaviour. 
The micro behaviour can sometimes be hidden in 
the system and inaccessible from the macro con-
siderations. In these cases, the model can provide 
access to internal interaction mechanisms of the 
system by tuning model parameters to give ob-
served macro behaviour. 

When the structure of the model has been de-
fined then the parameters of the model can be 
sought. By collecting data from the real system 
and converting the data into parameters the 
model is finally created. Different methodologies 
have been designed for bridging this step. When 
a physical relationship exists between certain 
parts of the system it is often possible to find 
model parameters from separate measurements. 
This possibility to construct the model and find 
model parameters in multiple independent ex-
periments is extremely valuable in ensuring a 
large region of validity for the model. 

Any model created has to be verified and vali-
dated. The verification and validation should be 
done by exercising the model in its whole range 
of validity. Verification means that a check is 
made that the model has been implemented cor-
rectly according to the specifications of the mod-
elling exercise. The validation means that a check 
is made that the model is a correct representation 
of the real system. A validation can be done only 
by using data sets which have not been used in 
constructing the model. 

6. The dilemma of modelling 

The validation process aims at checking that a 
model is a good representation of reality. Model 
predictions are compared with real system re-
sponses. If there is a good agreement the model 
can be accepted and used. The validation proce-
dure contains one catch, however, because devia-
tions between model predictions and reality are 
needed to force the modeller to inspect the model 
closer. Therefore there is always a possibility that 
the model gives good predictions for old data, but 
bad predictions when exposed to new data. 

A similar dilemma is hidden in the predictions 
given. If the model generates only expected re-
sults there is not much information in them and 
the actual benefit of the modelling exercise re-
mains poor. A good model should therefore al-
ways generate surprises. However, if the results 
deviate too much from what is expected, then 
these results tend not to be believed, regardless of 
their validity. A model, when it is as best, should 
therefore generate only mild surprises which can 
be believed or at least supported with common 
sense reasoning from the model assumptions. A 
model can generate believable predictions only 
when it has been developed in an evolutionary 
process of gradual refinements. 

An important question in any modelling exer-
cise is to what extent it is necessary to require 
that the structure of the model is similar or equal 
to the structure of the real system. A careful rep-
resentation of the structure of the real system has 
a larger chance of giving a robust model, i.e., a 
model which is valid in a large region and which 
will not give completely ridiculous predictions 
anywhere. Simon (1982a) argues for the impor-
tance of models in the economic sciences, which 
describe the microbehavior of the system cor-
rectly, i.e., models that are true causal models 
with a structure mimicking the structure of the 
real system. A black box model making blind 
predictions of observed past behaviour can sel-
dom provide the necessary internal robustness 
and explainability needed in a good model. 

The use of microbehavior as an explanation 
for macro-observations is actually the most im-
portant principle in modelling. The transition 
from the microworld to the macroworld is in car-
ried out as a summation of all the small particles 
contributing to observable macro-behaviour. A 
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model, which does not correctly describe the mi-
croworld can never provide but a very restricted 
description of the macroworld. With a metaphor 
one could say that a model of a snowflake should 
build on the choices of the interacting water 
molecules. 

A further dilemma is connected to the inherent 
unpredictability of non-linear systems. Systems 
exhibiting chaos, bifurcation and catastrophes 
have little prospect of being possible to model 
accurately. The possibility that two neighbouring 
initial values are giving qualitatively different 
responses for the same system equations implies 
that the responses are infinitely sensitive to small 
parameter fluctuations. The complexity of large 
scale systems can also make the modelling task 
an impossible one. Crucial interactions between 
variables can also be unknown. 

 
 

7. Decision making under uncertainty 

A formal treatment of risk analysis and risk 
management relies on the more general problem 
of decision making under uncertainty which has 
traditionally been approached with the expected 
utility theory. The formal theory is, however, too 
restricted to handle practical applications, but it 
can still provide important insights by directing 
attention to the validity of underlying assump-
tions. Decision making relies on models to pre-
dict outcomes of certain actions and models are 
used to describe the decision making problem 
itself. Uncertainty implies that outcomes can be 
predicted only in terms of probability distribu-
tions. Research in decision making has proposed 
a division into descriptive, normative and pre-
scriptive models of decision making (Bell, Raiffa 
and Tversky, 1988). 

Decision making is often viewed as an optimi-
zation problem. Four major components of an 
optimization problem should be considered. An 
objective defines an order relation on a set of out-
comes. There is a set of allowed actions which 
can be restricted in different ways. Finally there 
is the model of the system which connects the 
given input to a calculated output. The objective 
and the set of allowed actions set the rules for 
rationality. 

The transfer from preferences to order rela-
tions is not straightforward. One attempt has been 

to search for a natural set of axioms describing 
rationality. Table 1 is summarizing the essence of 
axioms proposed. Experiments have shown, 
however, that the formulation of a decision prob-
lem can result in different decisions (Tversky and 
Kahneman, 1988). The problem with these axi-
oms is that, in spite of their intuitive appeal, they 
are violated systematically by human decision 
makers. This experimental finding makes it dubi-
ous to use them as a base for a normative theory. 

 
A practical approach to decision making is to 

consider costs and benefits. A complication of 
the straightforward optimization problem is that 
costs and benefits often are related to utility by a 
nonlinear function. Another complication is in-
curred when the costs and benefits are distributed 
in time. Models for calculating discounted values 
of future costs and benefits are used to make 
them comparable, but these models again contain 
parameters which are both subjective and situa-
tion dependent. 

A complication of the simple optimization 
problem is connected to multiple values. A typi-
cal problem in risk analysis is to determine if a 
certain risk decreasing action which has a certain 
cost, can be considered worth wile to implement. 
If the decision is influencing several output vari-
ables simultaneously and gains in one variable 
are compensated for by losses in some other vari-
able, there are many additional difficulties to 
solve. A weighted sum or other combinations of 
the values can sometimes provide a model of a 
common objective. This has been tried in decid-

Table 1 
The axioms of rationality 

Invariance. The preference of an alternative A over 
an alternative B should be independent of how it is 
presented for the decision maker. 
Cancellation. If an alternative A is preferred to an 
alternative B then it shall be preferred also in the 
combined alternative A&C to the combined alterna-
tive B&C, where C is an arbitrary addition to the 
alternatives not depending on them. 
Transitivity. If an alternative A is preferred over an 
alternative B and B is preferred over C then A is pre-
ferred also over C. 
Dominance. If an alternative A={a1,_., an} is domi-
nating an alternative B={bl,...,bn} in such a way that 
each ai is preferred to each bi, then A should be pre-
ferred over B. 
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ing on risks by assigning a monetary value to 
different risks. The assignment of such weighing 
factors has, however, proved to be controversial 
especially when a calculation of the value of hu-
man life has been attempted. 

An additional complication is introduced when 
real decision making situations have to be mod-
elled. Including several decision makers with 
partly competing objectives leads to the consid-
eration of non-zero sum games. Real decision 
making situations where it is possible to manipu-
late the information given and the rules of the 
game are also far richer than any artificial deci-
sion making situation in the form of a simple 
game. The way human decision makers are act-
ing should also be taken into account, because 
internal models, beliefs and attitudes may intro-
duce preferences for certain options. 

 
 

8. Models of human decision making 

The human and social systems enter the risk 
management process at several points. Design 
and operation of technical systems always in-
volves humans. The risk analysis process is car-
ried out by humans and the results are interpreted 
by humans. There are certain costs and benefits 
involved in using the hazardous processes which 
may influence the interpretations of the results. 
This means that any model of a hazardous proc-
ess in some way has, to account for the humans 
involved. 

Research in human decision has shown that 
people generally make good decisions when they 
are well trained and are given enough time. It is 
however also well known that humans make er-
rors. The definition of a human error implies, 
however, that there is a way to tell what the cor-
rect decision is, i.e., there is a normative theory 
for decision making. The observation that hu-
mans systematically tend to violate the axioms of 
rationality therefore implies either that there are 
certain tasks where humans behave irrationally or 
that the normative theory is too simplified. The 
expected utility theory does not, however, ac-
count for several of the influences which are im-
portant for human decision making in a more 
realistic situation. 

A model of human decision making has to 
cover many different characteristics. An optimi-

zation problem used as a model of human deci-
sion making can cover only a few of them. Ac-
tual objectives are difficult to assess and under-
stand, outcomes are viewed differently, it can be 
difficult to get an agreement on allowed actions, 
etc. Decision makers also carry different internal 
models of how systems behave. Humans use heu-
ristics in their decisions. Heuristic rules are used 
to break down the problem into subproblems, to 
set priorities and to ensure that some decision 
will be generated within the time frame given. 
The benefit of using heuristics is that the decision 
maker can decrease his cognitive load in familiar 
situations. 

A framework of models of human decision 
making has been proposed by Jens Rasmussen 
(1976). His recognition that there are different 
mechanisms of human data processing which is 
depending on the familiarity of the task led to the 
separation between skill, rule and knowledge 
based behaviour (Rasmussen, 1983). This model 
is closely related to the cognitive, the associative 
and the autonomous stage described in connec-
tion with skill learning in the psychological lit-
erature (Anderson, 1980). A decision making 
task can be broken down into: detection of a need 
for a decision, collection of necessary informa-
tion, identification of system state, evaluation of 
decision alternatives, selection of decision, for-
mulation of implementation procedure, and exe-
cution and collection of feedback. These subtasks 
actually represent decision making situations of 
their own which again can be further subdivided. 
Many models are used in these decision making 
subtasks. Models can give rapid answers to pri-
orities and can be assumed to control the alloca-
tion of attention. Many of the models are tacit 
and based on preferences, attitudes and beliefs. 

A complication of modelling human decision 
makers is connected to the behaviour of people in 
groups as compared with the behaviour of single 
persons. People in a group seem to use a broader 
social rationality. Group interactions sometimes 
make collaboration important, while at other 
times competition is more important. There is a 
dynamics of interacting views in the search for a 
group decision. Organizations seem to emerge as 
entities of their own. Rewards and punishments 
have an overriding influence on the whole or-
ganization for better or for worse. A manipula-
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tion of individual utility functions can provide the 
balance between selfishness and altruism. Lead-
ership is one of the essential characteristics in a 
search for common themes aligning individual 
ambitions and desires. In a risk analysis frame-
work these mechanisms enter the interpretations 
of the results and their applicability on the under-
lying decision making problem. 

Social rationality contains a cautious attitude 
to change which is rational taking into account 
the large number of unexpected problems with 
new technologies. Suboptimal solutions are often 
preferable to a tedious search for an optimal deci-
sion, but in other cases any change can be prefer-
able to the status quo. There is a difference be-
tween the ways an idea is expressed on the enthu-
siasm and support it gets. This means that very 
subtle interference on a social level can have a 
large influence on actual development. Multiple 
and changing goals have their own influence on 
the dynamics of decisions. In this process of 
change, goals and priorities are subjected to con-
tinuous re-evaluation. The evaluation of costs and 
benefits has to be considered both spatially and 
temporally. Equity differences in risk contribu-
tion can have a large influence especially if weak 
social groups are the target. A pitiable victim of 
some risk can obtain support from influential 
decision makers. In reality there is a balance be-
tween individual and societal goals in the deci-
sions which may be difficult to model. 

Learning is a process of forming and using in-
creasingly refined models. Experience has the 
benefit of making the use of models automatic 
and therefore more rapid and less resource de-
manding. Making the decisions more automatic 
has however the danger of hiding important clues 
to important information behind a set of familiar 
cues. The balance between the pragmatics of 
suboptimality and the dangers of a too simplistic 
reasoning provides the essence of this dilemma of 
bounded rationality (Simon, 1982a,b). The emer-
gence and refinement of internal world models of 
human decision makers are one of the most inter-
esting mechanisms in modelling. Models of hu-
man intuition and understanding are however still 
far from any practical application. 

9. Models in risk analysis revisited 

There are several limitations of the risk analy-
sis methodology which are connected to limita-
tions in the models used. In the modelling proc-
ess, the modellers can also introduce important 
restrictions in the validity of the models. Models 
have their own regions of validity and a step out-
side of that region may render important conclu-
sions invalid. The interpretation of the results of a 
risk analysis relies on a true account of all the 
limiting assumptions of the used models. It is 
very easy but dangerous to consider the results of 
the analysis without the context of these assump-
tions. 

Even the concept of probability carries an in-
herent model which is based either on a subjec-
tive or an objective model of the world. Accord-
ing to the first model the probability is a result of 
uncertainties in measurements, parameters, initial 
values, etc. According to the second the uncer-
tainty is a property of the world where a mecha-
nism of chance is generating different realiza-
tions at different instants of time. This distinction 
in the interpretation of -probability can some-
times be important, because it sets a limit for use-
ful efforts in collecting additional information. 

A problem related to modelling is connected to 
a proof of causality. Causality between two 
events A and B such that A is the cause for B or 
written A � B means also that the negation ¬B 
� ¬A should hold. From observations it may be 
relatively easy to conclude that one of these con-
ditions is true, but to show that both are true in-
volves a considerable larger effort. Another com-
plication is that the causal mechanism is only 
influencing the probability distributions involved. 
The existence (or non-existence) of a small influ-
ence from a certain variable on a probability dis-
tribution can be very difficult to prove when the 
distribution is influenced by other similar vari-
ables. A typical example in this connection is to 
assess the influence of the Chernobyl accidents 
on cancer frequencies when they are confounded 
by many other variables without control. 

The intent of a safety analysis is to prove that 
the system is safe. This means that it should be 
proved that no safety threats exist. This is a proof 
of non-existence which always is more difficult 
than a proof of existence. A proof of existence 
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can be given by an example, but a proof of non-
existence has to be given using structural evi-
dence. In a model used in risk analysis there is 
always place for some yet unknown relationship 
which may enter a sequence of events with disas-
trous consequences. 

 
When a model response has been calculated 

the question is how this solution is influenced by 
inaccuracies in the models. Analyzing the sensi-
tivity of the solution with respect to changes in 
model parameters gives a possibility to address 
these questions. A great sensitivity of the solution 
to a specific parameter indicates that this has to 
be calculated very accurately not to make errors 
in the decision. The calculation of sensitivities 
provides one way for extracting additional infor-
mation from the models. The sensitivity coeffi-
cient of an output i to changes in an input j can be 
calculated as the quotient between change in out-
put and change in input. A sensitive parameter 
has to be identified accurately to make modelling 
results accurate. The sensitivities therefore pro-
vide importance measures for setting priorities 
for additional refinements of the models. 

A specific dilemma in connection with the 
models used for risk analysis is brought forward 
by the complexity of the systems (Wahlström, 
1992a). Different mechanisms contribute to an 
increasing size and complexity of technical sys-
tems. A better predictability is needed, but cannot 
be achieved. The errors in the results from a risk 
analysis are often indicative of deficiencies in the 
control structures of the systems. The control 
structures are containing an implicit model of the 
controlled system and deficiencies in the controls 
could therefore often be traced back to errors in 
the models and the modelling process. 

There are many actors in the process of risk 
analysis and these actors can have both expressed 
and hidden goals. The risk analysis and the re-
sponses for decreasing certain risks are parts of a 
societal decision making process (Wahlström, 
1992b). Policies, societal values and cultural hab-
its interact in this process which forms a part of 
political decision making. Industrial practices, 
tasks of safety authorities, the educational sys-
tem, etc. are determined in this process, which 
thereby sets the general level of safety in the so-
ciety. Many different institutional and individual 

parties such as companies operating hazardous 
facilities, vendor organizations, designers, con-
structors, operators, maintainers, and safety ana-
lysts are interacting in this process. Additional 
influence is obtained from subject matter experts, 
lobbying groups, media, local communities, sin-
gle issue movements, etc. 

Actions based on the risk analysis will always 
be considered in a negotiation between stake-
holders. Induced risks often are compensated 
with payments and therefore there is often a di-
rect gain of being the victim of some incident or 
risk. These interactions which have a direct inter-
est tend to obstruct a scientific interpretation of 
results obtained from the risk analysis models 
(Huber, 1991). 

 
 

10. Conclusions 

Models enter a risk analysis exercise in several 
ways. For the results to be applicable the models 
should be used in a region where they are valid. 
There are many implicit models used by the 
different actors in the risk analysis process. It is 
not an easy task to ensure that these models are 
valid representations of their corresponding real 
world systems. This validity requirement- can to 
some extent be ensured by making the models 
very transparent and thus at least to some extent 
separately verifiable. 

A risk analysis and actually any modelling ex-
ercise should aim for quantification, because it is 
often necessary to place results in a context. 
Qualitative models depend on the use of language 
which means that results are easily interpreted 
differently by different people. Quantitative 
models can, however, still be useful for structur-
ing the risk analysis and as a basis for later quan-
tifications. Sensitivity analysis can be used to 
generate qualitative results from a quantitative 
model in studying how small changes in parame-
ters influence the results. A sensitivity analysis 
can be extended to consider switching surfaces in 
a decision space and how these surfaces move in 
response to changes in important parameters. 

Formal models of risk analysis and decision 
making under uncertainty have been proposed, 
but these models are simplified to an extent 
where their applicability for real world problems 
is challenged. Simplified models can provide a 
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basis for possible extensions along the paths of 
multiple competing objectives and multiple deci-
sion makers. Models of human decision makers 
both alone and in a group need very much more 
work before they can be used in the same way as 
models for physical systems. One can even argue 
that models which are able predict the complete 
richness of human and societal behaviour will 
remain an utopia. Risk analysis can, however, be 
intelligently applied also without such models 
provided that the modellers have a sufficient un-
derstanding both for the mathematics of decision 
making and the psychology of human beings. 

Several general requirements can be placed on 
model performance. The responses should be 
repeatable, the model should have predictive 
power, the model should be based on scientific 
consensus, applied theories should be general, the 
models should be based on a mechanism of cause 
and effect, used theories should not be contradic-
tory and only a minimal number of assumptions 
should be used. Models can in principle be seen 
as an instance or an application of a theory. A 
theory is therefore more a general explanation of 
cause consequence relationships than a model. A 
model is actually geared very much towards sim-
ple predictions of outputs in response to inputs. 

A model takes a specific view in a transfer 
from micro to macro. The microstructure of one 
model can be the required macrostructure of an-
other model and vice versa. The models can actu-
ally be seen as a Russian doll where a considera-
tion of more details always opens up new views. 
A discussion of models, the modelling process 
and modellers involves models of models. This 
gives a type of self-reference (Hofstadter, 1979) 
where the model of a system has to contain a 
model of that model. Models are the essence of 
human cognition with which an understanding of 
the world is reached. Models of cognitive proc-
esses should therefore also include a model of 
how the modelling process is progressing. Mod-
els, analogies and metaphors are ingenious 
mechanisms of the human mind in managing the 
complexity of the real world. 
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